
CMSC 105
Elementary

Programming

Acknowledgement: These slides are adapted from
slides provided with “Introduction to Programming

Using Python, Liang (Pearson 2013)” and slides
shared by Dr. Jory Denny

1

Outline

The While Loops

The For Loops

Control Flow

• Control flow.
• Sequence of statements that are actually executed in a

program.

• Conditionals and loops: enable us to choreograph control
flow.

statement 2

statement 1

statement 4

statement 3
boolean 2

true

false

statement 2

boolean 1

statement 3

false

statement 1

true

straight-line control
flow

control flow with conditionals
and loops

Motivations
• Suppose that you need to print a string (e.g., "Welcome to

Python!") a hundred times. It would be tedious to have to write
the following statement a hundred times:

print("Welcome to Python!")

• So, how do you solve this problem?

• How about altering our guessing game program to allow 20
tries?

A loop can be used to tell a program to
execute statements repeatedly!

Opening Problem

print("Welcome to Python!")

print("Welcome to Python!")

print("Welcome to Python!")

print("Welcome to Python!")

print("Welcome to Python!")

print("Welcome to Python!")

…
print("Welcome to Python!")

print("Welcome to Python!")

100
times

The While
Loops

Image from http://www.quickmeme.com/meme/3rgii1/page/1/

Introducing while Loops

1. count = 0

2. while count < 100:

3. print("Welcome to Python")

4. count += 1

while Loop Flow Chart

1. while loop-continuation-condition:

2. # loop-body

3. Statement(s)

1. count = 0

2. while count < 100:

3. print("Welcome to Python")

4. count += 1

count < 100?

True

print("Welcome to Python!")

count += 1

False

count = 0

A while loop
executes
statements
repeatedly as
long as a
condition
remains true

Tracing While loops

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Memory Output

Tracing While loops

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Initialize Count

Memory
count: 0

Output

Tracing While loops

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Count < 2 is true

Memory
count: 0

Output

Tracing While loops

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Output

Memory
count: 0

Output
Welcome to Python

Tracing While loops

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1 Increment count

Memory
count: 0 1

Output
Welcome to Python

Tracing While loops

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Count < 2 is true

Memory
count: 0 1

Output
Welcome to Python

Tracing While loops

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Memory
count: 0 1

Output
Welcome to Python
Welcome to Python

Output

Tracing While loops

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Memory
count: 0 1 2

Output
Welcome to Python
Welcome to Python

Increment count

Tracing While loops

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Count < 2 is false

Memory
count: 0 1 2

Output
Welcome to Python
Welcome to Python

Tracing While loops

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Continue after

Memory
count: 0 1 2

Output
Welcome to Python
Welcome to Python

Question

• What is wrong with the following code?

• What happens?

• Fix it and explain what the code outputs

1. i, N = 0, 10000

2. while i <= N:

3. print(i)

4. i = i + 5

Exercise

• Using while loops, write a program that runs 10 times
and prints the sum of numbers from 1 to 10

21

Ending a Loop with a Sentinel Value

Often the number of times a loop is executed is not
predetermined. You may use an input value to signify
the end of the loop. Such a value is known as a
sentinel value.

Write a program that reads and calculates the sum of
an unspecified number of integers. The input 0
signifies the end of the input.

SentinelValue

https://liangcpp.pearsoncmg.com/pyhtml/SentinelValue.html

Caution

• Don’t use floating-point values for equality checking in
a loop control. Since floating-point values are
approximations for some values, using them could
result in imprecise counter values and inaccurate
results. Consider the following code for computing 1 +
0.9 + 0.8 + ... + 0.1:

1.item, sum = 1, 0
2.while item != 0: # No guarantee item will be 0
3. sum += item
4. item -= 0.1
5.print(sum)

The For
Loop

for Loops

1. for var in sequence:

2. # loop body

3. Statement(s)

Example
1. for x in range(0, 100):

2. print("Welcome to Python!")

Initialize var to first

element

Have all
elements in

sequence been

visited?

Statement(s)

Try to update var

to be the next
element in the

sequence

True False

25

for Loops

i = initialValue # Initialize loop-control variable

while i < endValue:

Loop body

...

i++ # Adjust loop-control variable

for i in range(initialValue, endValue):

Loop body

26

range(a, b)

>>> for v in range(4, 8):

... print(v)

...

4

5

6

7

>>>

27

range(b)

>>> for i in range(4):

... print(i)

...

0

1

2

3

>>>

28

range(a, b, step)

>>> for v in range(3, 9, 2):

... print(v)

...

3

5

7

>>>

29

range(a, b, step)

>>> for v in range(5, 1, -1):

... print(v)

...

5

4

3

2

>>>

Tracing For loops

1. for x in range(0, 2):

2. print("Welcome to Python!")

Memory Output

Tracing For loops

1. for x in range(0, 2):

2. print("Welcome to Python!")

Initialize x

Memory
x: 0

Note range(0, 2) is [0, 1]

Output

Tracing For loops

1. for x in range(0, 2):

2. print("Welcome to Python!")

Have all elements been visited?
No

Memory
x: 0

Note range(0, 2) is [0, 1]

Output

Tracing For loops

1. for x in range(0, 2):

2. print("Welcome to Python!")

Memory
x: 0

Note range(0, 2) is [0, 1]

Output
Welcome to Python!

Output

Tracing For loops

1. for x in range(0, 2):

2. print("Welcome to Python!")

Try to set x to next
element of
sequence

Memory
x: 0 1

Note range(0, 2) is [0, 1]

Output
Welcome to Python!

Tracing For loops

1. for x in range(0, 2):

2. print("Welcome to Python!")

Memory
x: 0 1

Note range(0, 2) is [0, 1]

Output
Welcome to Python!

Have all elements been visited?
No

Tracing For loops

1. for x in range(0, 2):

2. print("Welcome to Python!")

Memory
x: 0 1

Note range(0, 2) is [0, 1]

Output
Welcome to Python!
Welcome to Python!

Output

Tracing For loops

1. for x in range(0, 2):

2. print("Welcome to Python!")

Memory
x: 0 1

Note range(0, 2) is [0, 1]

Output
Welcome to Python!
Welcome to Python!

Try to set x to next
element of
sequence

Tracing For loops

1. for x in range(0, 2):

2. print("Welcome to Python!")

Memory
x: 0 1

Note range(0, 2) is [0, 1]

Output
Welcome to Python!
Welcome to Python!

Have all elements been visited?
Yes

Tracing For loops

1. for x in range(0, 2):

2. print("Welcome to Python!")

Memory
x: 0 1

Note range(0, 2) is [0, 1]

Output
Welcome to Python!
Welcome to Python!

Continue after

Compare For Loops to while loop

1. count = 0

2. while count < 100:

3. print("Welcome to Python")

4. count += 1

1. for x in range(1, 100):

2. print("Welcome to Python!")

Note, each has their own use.
For loops are a special case in which each element of a
sequence is visited. In this case (and only this case) are
for-loops appropriate in Python.

Other Control flow
statements

46

break

 sum = 0

 number = 0

 while number < 20:

 number += 1

 sum += number

 if sum >= 100:

 break

 print("The number is ", number)

 print("The sum is ", sum)

Break out of

the loop

47

continue

 sum = 0

 number = 0

 while number < 20:

 number += 1

 if number == 10 or number == 11:

 continue

 sum += number

 print("The sum is ", sum)

Jump to the

end of the

iteration

Example

Using for loop, write a program that:

• Runs 10 times (from 1 to 10)

• Computes square of numbers from 1 to 10 and prints
them

• If the square value is greater than or equal to 80, then
exit the for loop

Control Flow Summary
• Control flow

• Sequence of statements that are actually executed in a program.

• Conditionals and loops: enable us to choreograph the control flow.

Control Flow Description Examples

Straight-line
programs

All statements are
executed in the order
given

Conditionals Certain statements
are executed
depending on the
values of certain
variables

if; if-else

Loops Certain statements
are executed
repeatedly until
certain conditions are
met

while; for

Thank you!
Questions?

