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Outline

The While Loops

The For Loops



Control Flow

• Control flow.
• Sequence of statements that are actually executed in a 

program.

• Conditionals and loops: enable us to choreograph control 
flow.

statement 2

statement 1

statement 4

statement 3
boolean 2

true

false

statement 2

boolean 1

statement 3

false

statement 1

true

straight-line control 
flow

control flow with conditionals 
and loops



Motivations
• Suppose that you need to print a string (e.g., "Welcome to 

Python!") a hundred times. It would be tedious to have to write 
the following statement a hundred times:

print("Welcome to Python!")

• So, how do you solve this problem?

• How about altering our guessing game program to allow 20 
tries?

A loop can be used to tell a program to 
execute statements repeatedly!



Opening Problem

print("Welcome to Python!")

print("Welcome to Python!")

print("Welcome to Python!")

print("Welcome to Python!")

print("Welcome to Python!")

print("Welcome to Python!")

… 
print("Welcome to Python!")

print("Welcome to Python!")

100 
times



The While 
Loops

Image from http://www.quickmeme.com/meme/3rgii1/page/1/



Introducing while Loops

1. count = 0

2. while count < 100:

3. print("Welcome to Python")

4. count += 1



while Loop Flow Chart

1. while loop-continuation-condition:

2. # loop-body

3. Statement(s)

1. count = 0

2. while count < 100:

3. print("Welcome to Python")

4. count += 1

 

 

count < 100? 

True 

print("Welcome to Python!") 

count += 1 

False 

count = 0 

A while loop 
executes 
statements 
repeatedly as 
long as a 
condition 
remains true



Tracing While loops

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Memory Output



Tracing While loops

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Initialize Count

Memory
count: 0

Output



Tracing While loops

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Count < 2 is true

Memory
count: 0

Output



Tracing While loops

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Output

Memory
count: 0

Output
Welcome to Python



Tracing While loops

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1 Increment count

Memory
count: 0 1

Output
Welcome to Python



Tracing While loops

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Count < 2 is true

Memory
count: 0 1

Output
Welcome to Python



Tracing While loops

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Memory
count: 0 1

Output
Welcome to Python
Welcome to Python

Output



Tracing While loops

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Memory
count: 0 1 2

Output
Welcome to Python
Welcome to Python

Increment count



Tracing While loops

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Count < 2 is false

Memory
count: 0 1 2

Output
Welcome to Python
Welcome to Python



Tracing While loops

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Continue after

Memory
count: 0 1 2

Output
Welcome to Python
Welcome to Python



Question

• What is wrong with the following code?

• What happens?

• Fix it and explain what the code outputs

1. i, N = 0, 10000

2. while i <= N:

3. print(i)

4. i = i + 5



Exercise

• Using while loops, write a program that runs 10 times 
and prints the sum of numbers from 1 to 10
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Ending a Loop with a Sentinel Value 

Often the number of times a loop is executed is not 
predetermined. You may use an input value to signify 
the end of the loop. Such a value is known as a 
sentinel value. 

Write a program that reads and calculates the sum of 
an unspecified number of integers. The input 0 
signifies the end of the input. 

SentinelValue

https://liangcpp.pearsoncmg.com/pyhtml/SentinelValue.html


Caution

• Don’t use floating-point values for equality checking in 
a loop control. Since floating-point values are 
approximations for some values, using them could 
result in imprecise counter values and inaccurate 
results. Consider the following code for computing 1 + 
0.9 + 0.8 + ... + 0.1:

1.item, sum = 1, 0
2.while item != 0: # No guarantee item will be 0
3. sum += item
4. item -= 0.1
5.print(sum)



The For 
Loop



for Loops

1. for var in sequence:

2. # loop body

3. Statement(s)

Example
1. for x in range(0, 100):

2. print("Welcome to Python!")

Initialize var to first 

element

Have all 
elements in 

sequence been 

visited?

Statement(s)

Try to update var 

to be the next 
element in the 

sequence

True False
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for Loops

i = initialValue # Initialize loop-control variable

while i < endValue: 

# Loop body

...

i++ # Adjust loop-control variable

for i in range(initialValue, endValue): 

# Loop body
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range(a, b)

>>> for v in range(4, 8):

...     print(v)

...

4

5

6

7

>>>



27

range(b)

>>> for i in range(4):

...     print(i)

...

0

1

2

3

>>>
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range(a, b, step)

>>> for v in range(3, 9, 2):

...     print(v)

...

3

5

7

>>>
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range(a, b, step)

>>> for v in range(5, 1, -1):

...     print(v)

...

5

4

3

2

>>>



Tracing For loops

1. for x in range(0, 2):

2. print("Welcome to Python!")

Memory Output



Tracing For loops

1. for x in range(0, 2):

2. print("Welcome to Python!")

Initialize x

Memory
x: 0

*Note* range(0, 2) is [0, 1]

Output



Tracing For loops

1. for x in range(0, 2):

2. print("Welcome to Python!")

Have all elements been visited? 
No

Memory
x: 0

*Note* range(0, 2) is [0, 1]

Output



Tracing For loops

1. for x in range(0, 2):

2. print("Welcome to Python!")

Memory
x: 0

*Note* range(0, 2) is [0, 1]

Output
Welcome to Python!

Output



Tracing For loops

1. for x in range(0, 2):

2. print("Welcome to Python!")

Try to set x to next 
element of 
sequence

Memory
x: 0 1

*Note* range(0, 2) is [0, 1]

Output
Welcome to Python!



Tracing For loops

1. for x in range(0, 2):

2. print("Welcome to Python!")

Memory
x: 0 1

*Note* range(0, 2) is [0, 1]

Output
Welcome to Python!

Have all elements been visited? 
No



Tracing For loops

1. for x in range(0, 2):

2. print("Welcome to Python!")

Memory
x: 0 1

*Note* range(0, 2) is [0, 1]

Output
Welcome to Python!
Welcome to Python!

Output



Tracing For loops

1. for x in range(0, 2):

2. print("Welcome to Python!")

Memory
x: 0 1

*Note* range(0, 2) is [0, 1]

Output
Welcome to Python!
Welcome to Python!

Try to set x to next 
element of 
sequence



Tracing For loops

1. for x in range(0, 2):

2. print("Welcome to Python!")

Memory
x: 0 1

*Note* range(0, 2) is [0, 1]

Output
Welcome to Python!
Welcome to Python!

Have all elements been visited? 
Yes



Tracing For loops

1. for x in range(0, 2):

2. print("Welcome to Python!")

Memory
x: 0 1

*Note* range(0, 2) is [0, 1]

Output
Welcome to Python!
Welcome to Python!

Continue after



Compare For Loops to while loop

1. count = 0

2. while count < 100:

3. print("Welcome to Python")

4. count += 1

1. for x in range(1, 100):

2. print("Welcome to Python!")

Note, each has their own use.
For loops are a special case in which each element of a 
sequence is visited. In this case (and only this case) are 
for-loops appropriate in Python.



Other Control flow 
statements
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break

    sum = 0 

   number = 0 

 

   while number < 20: 

       number += 1 

       sum += number 

       if sum >= 100:  

           break 

 

   print("The number is ", number) 

   print("The sum is ", sum) 

 

Break out of  

the loop 
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continue

   sum = 0 

  number = 0 

 

  while number < 20:  

      number += 1 

  if number == 10 or number == 11:  

      continue 

      sum += number 

 

  print("The sum is ", sum) 

 

Jump to the 

end of the  

iteration 

 



Example

Using for loop, write a program that:

• Runs 10 times (from 1 to 10)

• Computes square of numbers from 1 to 10 and prints 
them

• If the square value is greater than or equal to 80, then
exit the for loop



Control Flow Summary
• Control flow

• Sequence of statements that are actually executed in a program.

• Conditionals and loops:  enable us to choreograph the control flow.

Control Flow Description Examples

Straight-line
programs

All statements are 
executed in the order 
given

Conditionals Certain statements 
are executed
depending on the 
values of certain 
variables

if; if-else

Loops Certain statements 
are executed
repeatedly until 
certain conditions are 
met

while; for



Thank you!
Questions?


