

CMSC 105 Elementary Programming

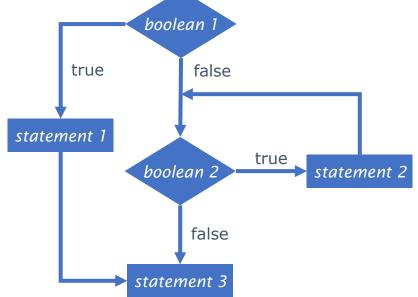
Acknowledgement: These slides are adapted from slides provided with "Introduction to Programming Using Python, Liang (Pearson 2013)" and slides shared by Dr. Jory Denny

Control Flow & Boolean Values

Relational Operators

Outline

if-else Statements


Multiple Conditions

Control Flow

- · Control flow.
 - Sequence of statements that are actually executed in a program.

Conditionals and loops: enable us to choreograph control

flow.

Notation

algorithm

Block – statement of code

Open circle - start/end of

Diamond - conditional

straight-line control flow

statement 4

statement 1

statement 2

statement 3

control flow with conditionals and loops

True and **False** are the only Boolean values.

The type is shown as **<class 'bool'>**.

>>> type (True)

True and False are the only Boolean values.

The type is shown as **<class 'bool'>**.

```
>>> type(True)
<class 'bool'>
```

True and **False** are the only Boolean values.

The type is shown as **<class 'bool'>**.

```
>>> type(True)
<class 'bool'>
>>> type(False)
```

True and False are the only Boolean values.

The type is shown as **<class 'bool'>**.

```
>>> type(True)
<class 'bool'>
>>> type(False)
<class 'bool'>
```

Relational Operators

Python Operator	Mathematics Symbol	Name	Example (radius is 5)	Result
<	<	less than	radius < 0	false
<=	≤	less than or equal to	$radius \le 0$	false
>	>	greater than	$radius \ge 0$	true
>=	≥	greater than orequal to	radius >= 0	true
_	=	equal to	radius == 0	false
į=	≠	not equal to	radius != 0	true

Logical Operators

Python Operator	Math Symbol	Description
not	٦	logical negation
and	٨	logical conjunction
or	V	logical disjunction

```
>>> x = 25
>>> y = 30
```

```
>>> x = 25
>>> y = 30
>>> x < y
```

```
>>> x = 5
>>> y = 10
>>> x < y
True
```

```
>>> x = 5
>>> y = 10
>>> x < y
True
>>> x > y
```

```
>>> x = 5
>>> y = 10
>>> x < y
True
>>> x > y
False
```

```
>>> x = 5
>>> y = 10
>>> x < y
True
>>> x > y
False
>>> x == y
```

A Boolean value is the result of a relational expression:

Checking if x is equal to y! Symbol == checks for equality

```
>>> x = 5
>>> y = 10
>>> x < y
True
>>> x > y
False
>>> x == y
False
```

Example

- Check if a number is
 - Divisible by 2 and 3
 - Divisible by 2 or 3

```
Line 1  x = eval(input("Enter a number: "))

Line 2  divBy2 = x % 2 == 0

Line 3  divBy3 = x % 3 == 0

Line 4  print(x, "divisible by 2 and 3: ", divBy2 and divBy3)

Line 5  print(x, "divisible by 2 or 3: ", divBy2 or divBy3)
```

Exercise

- Let a user enter a year, and output whether or not it is a leap year. A year is a leap year if it is
 - Divisible by 4 but not by 100
 - OR
 - Divisible by 400
- Do not use any if statements, only Boolean expressions

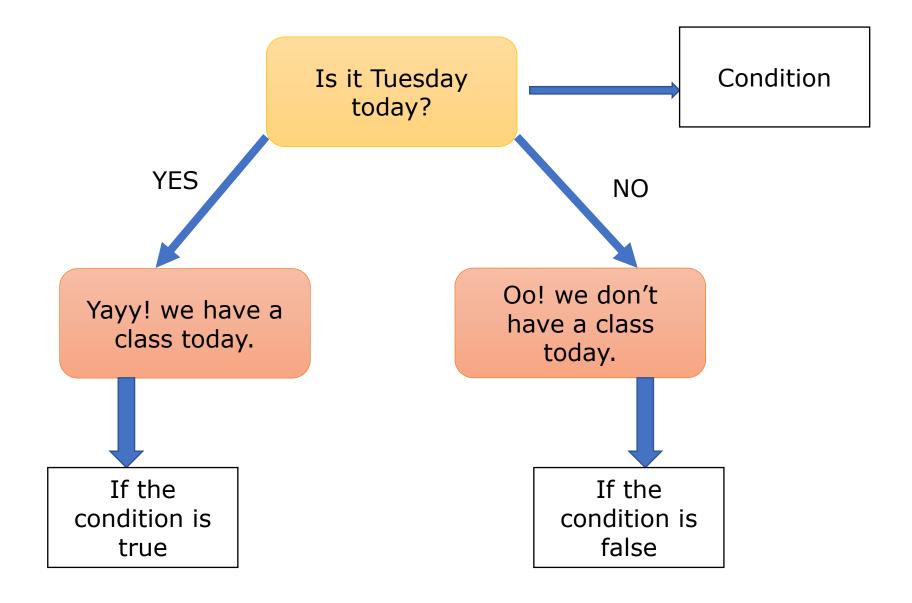
Operator Precedence

```
(unary +/-)
1. +, -
2. **
                                      (exponentiation)
3. not
   *, (multiplication/division)
                                           //,
5. +, -
                                      (addition/subtraction)
6. < < < > > > > > =
                                      (comparison)
7. ==, !=
                                      (equality)
8. and
9. or
10.=, +=, -=, *=, /=, //=, %=
                                      (Assignment operator)
```

Operator Precedence and Associativity

- The expression in the parentheses is evaluated first.
- When evaluating an expression without parentheses, the operators are applied according to the precedence rule and the associativity rule.
- If operators with the same precedence are next to each other, their associativity determines the order of evaluation. All binary operators except assignment operators are left-associative.

Example


 Applying the operator precedence and associativity rule, the expression

$$3 + 4 * 4 > 5 * (4 + 3) - 1$$

is evaluated as follows:

$$3 + 4 * 4 > 5 * (4 + 3) - 1$$
 $3 + 4 * 4 > 5 * 7 - 1$
 $3 + 16 > 5 * 7 - 1$
 $3 + 16 > 35 - 1$
 $4 + 16 > 35 - 1$
 $5 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$
 $6 + 16 > 34$

if-else Statement

This statement is also known as a *conditional* statement. It has two basic forms:

if condition: consequent

This statement is also known as a *conditional* statement. It has two basic forms:

if condition:

consequent

if condition:

consequent

else:
alternate

This statement is also known as a *conditional* statement. It has two basic forms:

if condition: consequent

The consequent and alternate are groups of one or more statements.

if condition:
 consequent
else:
 alternate

This statement is also known as a *conditional* statement. It has two basic forms:

if condition:

They must be indented!

if condition:

consequent

else:

alternate

This statement is also known as a *conditional* statement. It has two basic forms:

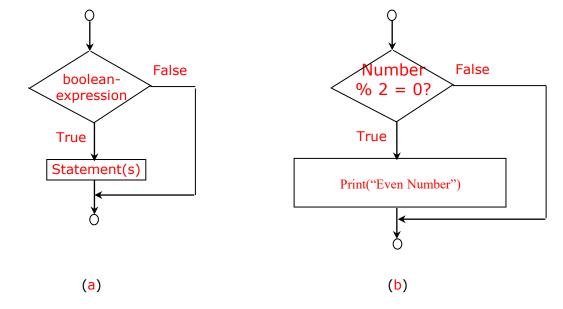
if condition:

They must be indented!

The standard in Python is to use 4 spaces.

if condition:

else:



One-way if Statements

```
1. if boolean-expression:
```

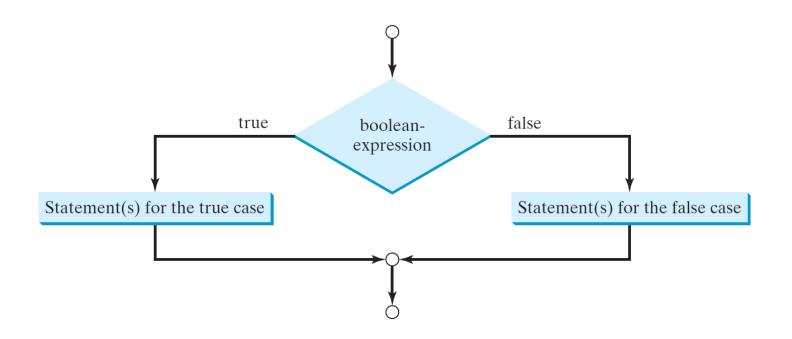
2. statement(s)

1. if number % 2 == 0:
2. print("Even Number")

Note

Indentation matters

```
if i > 0:
print("i is positive")


(a) Wrong

if i > 0:
    print("i is positive")

(b) Correct
```

The Two-way if Statement

```
    if boolean-expression:
    statement(s)-for-the-true-case
    else:
    statement(s)-for-the-false-case
```


if-else Example

```
number=eval(input("Enter a number"))

if(number%2==0):
    print("Even number")

consequent
else:
    print("Not an even number")

Alternate
```

Exercise

- Write a program that reads the total exam score and displays the grades. Here are the conditions:
 - If score is greater than or equal to 90, then display grade 'A'
 - Display grade 'B', otherwise

Multiple Conditions

```
if condition1:
                                 if condition1:
  consequent1
                                   consequent1
                                 elif condition2:
else:
  if condition2:
                                   consequent2
                      same
                                 elif condition3:
    consequent2
                                   consequent3
  else:
    if condition3:
                                 else:
                                   alternate3
      consequent3
    else:
      alternate3
```

Example

- Check if a number is
 - Divisible by 2 and 3
 - Divisible by 2 or 3

Enter a number:18

```
Line 1 number = eval(input("Enter a number:")) 
Line 2 if(number%2 == 0 and number%3 == 0): 
Line 3 print("Divisible by both 2 and 3.") 
Line 4 elif(number%2 == 0 or number%3 == 0): 
Line 5 print("Divisible by 2 or 3.")
```

TRUE

Divisible by both 2 and 3

Example

- Check if a number is
 - Divisible by 2 and 3
 - Divisible by 2 or 3

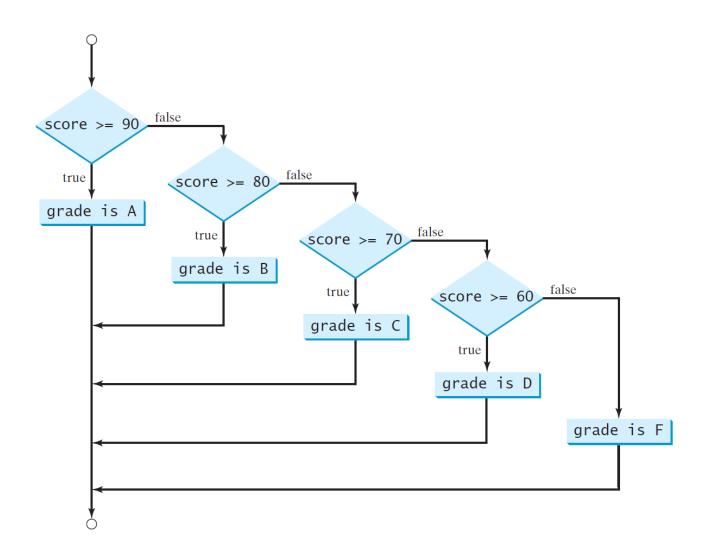
Enter a number:22

Divisible by 2 or 3

```
Line 1 number = eval(input("Enter a number:"))

Line 2 if(number%2 == 0 and number%3 == 0):

FALSE


Line 3 print("Divisible by both 2 and 3.")

Line 4 elif(number%2 == 0 or number%3 == 0):

TRUE

Line 5 print("Divisible by 2 or 3.")
```

Multi-Way if-else Statements


```
Suppose score is 72.3
     if score \geq 90.0:
2.
       grade = 'A'
                                     Condition is false
3.
     elif score >= 80.0:
       grade = 'B'
5. elif score >= 70.0:
6. qrade = 'C'
7. elif score >= 60.0:
     grade = 'D'
8.
9.
    else:
10.
   grade = 'F'
```

```
Suppose score is 72.3
1. if score \geq 90.0:
        grade = 'A'
3.
    elif score >= 80.0:
4.
        grade = 'B'
                                      Condition is false
5.
   elif score \geq 70.0:
        grade = 'C'
7. elif score >= 60.0:
8.
     grade = 'D'
9.
     else:
10.
   grade = 'F'
```

```
Suppose score is 72.3
1. if score >= 90.0:
       grade = 'A'
3.
  elif score \geq 80.0:
       grade = 'B'
5.
  elif score \geq 70.0:
6.
     grade = 'C'
                                      Condition is true
     elif score >= 60.0:
8.
       grade = 'D'
9.
     else:
10.
   grade = 'F'
```

```
Suppose score is 72.3
1. if score >= 90.0:
       grade = 'A'
3.
  elif score >= 80.0:
       grade = 'B'
5.
  elif score \geq 70.0:
     grade = 'C'
                                      Output "C"
   elif score \geq 60.0:
8.
      grade = 'D'
9.
     else:
10.
   grade = 'F'
```

```
1. if score >= 90.0:
      grade = 'A'
3. elif score >= 80.0:
4. qrade = 'B'
5. elif score >= 70.0:
6. qrade = 'C'
7. elif score >= 60.0:
8.
    grade = 'D'
9.
    else:
10.
    grade = 'F'
```

Suppose score is 72.3

Exit the block

Problem: Computing Taxes

 The US federal personal income tax is calculated based on the filing status and taxable income. There are four filing statuses: single filers, married filing jointly, married filing separately, and head of household. The tax rates for 2009 are shown below.

Marginal Tax Rate	Single	Married Filing Jointly or Qualifying Widow(er)	Married Filing Separately	Head of Household
10%	\$0 - \$8,350	\$0 - \$16,700	\$0 - \$8,350	\$0 - \$11,950
15%	\$8,351 - \$33,950	\$16,701 – \$67,900	\$8,351 - \$33,950	\$11,951 - \$45,500
25%	\$33,951 - \$82,250	\$67,901 - \$137,050	\$33,951 - \$68,525	\$45,501 - \$117,450
28%	\$82,251 - \$171,550	\$137,051 - \$208,850	\$68,526 - \$104,425	\$117,451 - \$190,200
33%	\$171,551 - \$372,950	\$208,851 - \$372,950	\$104,426 - \$186,475	\$190,201 - \$372,950
35%	\$372,951+	\$372,951+	\$186,476+	\$372,951+

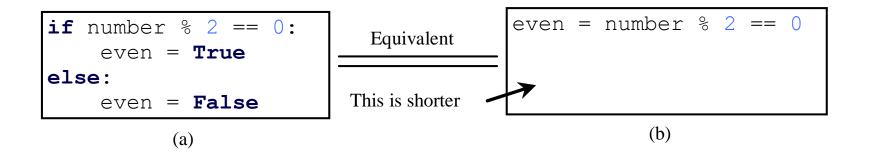
Problem: Computing Taxes, cont.

```
1. if status == 0:
  # Compute tax for single filers
3. elif status == 1:
4. # Compute tax for married filing jointly
5. elif status == 2:
6. # Compute tax for married filing
   separately
7. elif status == 3:
  # Compute tax for head of household
9. else:
10. # Display wrong status
```

Common Errors

 Most common errors in selection statements are caused by incorrect indentation. Consider the following code in (a) and (b).

```
radius = -20
if radius >= 0:
    area = radius * radius * 3.14
print("The area is", area)
```


(a) Wrong

```
radius = -20
if radius >= 0:
    area = radius * radius * 3.14
    print("The area is", area)
```

(b) Correct

TIP

Use Boolean expressions when you can

CAUTION

Exercise

- Write a program that reads a number and checks the following:
 - If the number is divisible by 2, display "Divisible by 2"
 - If the number is divisible by 5, display "Divisible by 5"

Exercise

- Extend the grading exercise by checking additional conditions:
 - If range of score is between 90 to 100, grade is 'A'
 - If range of score is between 80 to 90, grade is 'B'
 - If range of score is between 70 to 80, grade is 'C'
 - Display, grade 'D' otherwise

Hint: Use and, or in if-else statements.

Thank you! Questions?