
CMSC 105
Elementary

Programming
Acknowledgement: These slides are adapted from
slides provided with “Introduction to Programming

Using Python, Liang (Pearson 2013)” and slides
shared by Dr. Jory Denny

1

Outline

Introduction to Programming

Walk Through Programming

Variables and Naming

Expressions

Type Conversion

Introduction to Programming

Walk through Programming

Hello Class!

HelloClass.py
1. #Print two messages
2. print("Hello Class!")
3. print("Welcome to CMSC 105")

• Run: python3 HelloClass.py

Tracing

HelloClass.py
1. #Print two messages
2. print("Hello class")
3. print("Welcome to CMSC 105")

• Tracing is the activity of following a computation by hand.
• Not a classroom activity! Professionals do this regularly on sections

of programs
• Typically to determine when something goes wrong

Output

Memory

Hello Class
Welcome to CMSC 105

Anatomy of a Python Program

• Statements
• Comments
• Indentation

Statement

• A statement represents an action or a sequence of actions.
• The statement print("Hello class") in the program is a statement

to display the message "Hello class".

HelloWorld.py
1. #Print two messages
2. print("Hello class")
3. print("Welcome to CMSC 105")

Indentation

• The indentation matters in Python. Note that the statements are entered from
the first column in the new line. It would cause an error if the program is
typed as follows, for example:

HelloWorld.py
1. #Print two messages
2. print("Hello class")
3. print("Welcome to CMSC 105")

Special Symbols

Character Name Description

 ()

" "

''' '''

Opening and closing
parentheses

Pound sign

Opening and closing
quotation marks

Opening and closing
quotation marks

Used with functions.

Precedes a comment line.

Enclosing a string (i.e., sequence of characters).

Enclosing a paragraph comment.

()

#

" "

''' '''

Opening and closing parentheses

Pound sign

Opening and closing quotation marks

Opening and closing quotation marks

Used with functions.

Precedes a comment line.

Enclosing a string (i.e., sequence of characters).

Enclosing a paragraph comment.

Character Name	 Description	

Reserved words

• Reserved words or keywords are words that have a specific meaning
to the compiler and cannot be used for other purposes in the program.
We will see many of these during the course of the semester. The
previous program doesn't have any specifically.

Programming Style and Documentation

• Appropriate Comments

• Naming Conventions

• Proper Indentation and Spacing Lines

Appropriate Comments

• Include a summary at the beginning of the program to explain what the
program does, its key features, its supporting data structures, and any unique
techniques it uses.

• Document each variable, function, and class

• Include your name and a brief description at the beginning of the program.

Naming Conventions

• Choose meaningful and descriptive names.

Proper Indentation and Spacing

• Indentation
• Indent two spaces.
• A consistent spacing style makes programs clear and easy to read, debug,

and maintain.

• Spacing
• Use blank line to separate segments of the code.

Programming Errors

• Syntax Errors
• Error in writing python syntax

• Runtime Errors also called Exceptions
• Causes the program to abort

• Logic Errors
• Produces incorrect result

Syntax Errors

• Syntax errors are errors from incorrectly written Python
code.

• Anatomy of a compiler error:
File "filename.py", line num
ErrorType: Confusing description of error including code
where it occurs.

• Deal with errors by experience, google, stack overflow, etc.
After you have exhausted these resources…piazza/ask me.
Advice, always handle the first error…not the last one.

HelloWorld.py
1. //Print two messages
2. print("Hello class"
3. print(Welcome to CMSC 105") Can anyone spot

the syntax errors?

Runtime Errors

• Runtime errors occur from impossible commands encountered while executing
the program

• Error message shows a "traceback" of the program execution. Right now, just
know that this tells where/why the error occurs.

HelloWorld.py
1. print(1/0)

Logic Errors

• Logic errors are incorrect computations that run without exceptions but
produce the incorrect output

HelloWorld.py
1. #Celcius conversion
2. print("Celcius 35 is Fahrenheit",

(9//5)*35+32)

Can anyone spot
the logic error?

Launch Python

21

Launch Python IDLE

22

Run Python Script

23

A Simple Python Program
Display two messages

print("Welcome to Python")

print("Python is fun")

24

Welcome Note: Clicking the green button displays the source
code with interactive animation. You can also run
the code in a browser. Internet connection is
needed for this button.

https://liangcpp.pearsoncmg.com/pyhtml/Welcome.html

Trace a Program Execution

25

Display two messages

print("Welcome to Python")

print("Python is fun")

Execute a statement

Trace a Program Execution

26

Display two messages

print("Welcome to Python")

print("Python is fun")

Execute a statement

Python IDE

• IDE stands for Integrated Development Environment. It’s a coding tool which
allows you to write, test, and debug your code in an easier way

• Some possible Integrated Development Environment platforms for Python can
be found at:

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Reading input from the console

ComputeArea.py
1. # Assign a value to radius
2. radius = eval(input("Enter a value for a

radius: "))
3.
4. # Compute the area
5. area = radius * radius * 3.14159
6.
7. # Display the result
8. print("The area for a circle with radius",

radius, "is", area) eval is a function
that converts those
key strokes to a
value

input is a function to
collect key strokes
from the console

Data Types

• Overall, data types define the available operations on and range
of the data representation. Additionally, it notes how it is stored
in memory.

• Right now we have seen:
• Strings – sequences of characters, e.g., "Hello"
• Floating point numbers – representing real numbers with

fractional components, e.g., 3.54
• Integers – representing positive and negative whole numbers,

e.g., 15

Variables and Naming

Identifiers (names)

• Identifiers are the names that identify the elements such as variables and
functions in a program.

• An identifier is a sequence of characters that consist of letters, digits,
underscores (_), and asterisk (*).

• An identifier must start with a letter or an underscore (_).
• An identifier cannot be a reserved word. (See Appendix A, “Python

Keywords,” for a list of reserved words).
• An identifier can be of any length.

Which of these are invalid identifiers?
Area, 2volume, miles, radius, if,

Literals

• A literal is a constant value that appears directly in the program. For
example, 34, 1,000,000, and 5.0 are literals in the following statements:

i = 34
x = 1000000
d = 5.0

Variables

• A variable is a named piece of data (memory). It stores a value!

• Variables are used to reference values that may be changed in the
program

• It has a type that defines how the memory is interpreted and what
operations are allowed

var = value
Example: radius = 5

Expressions

• Expressions are combinations of literals, variables, operations,
and function calls that generate new values

3 + 4𝑥𝑥
5

−
10 𝑦𝑦 − 5 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐

𝑥𝑥
+ 9

4
𝑥𝑥

+
9 + 𝑥𝑥
𝑦𝑦

is translated to

(3+4*x)/5 – 10*(y-5)*(a+b+c)/x + 9*(4/x +
(9+x)/y)

Assignment Statements

• Assignment statements give values to a variable

x = 1; // Assign 1 to x;
radius = 1.0; // Assign 1.0 to radius;
a = 'A'; // Assign 'A' to a;

Simultaneous assignment

• Python allows a shorthand to create/assign multiple variables at a time.
Variables and expressions will be comma separated. An example:

Examples:
• x, y = (a+b)/2, (a-b)/2
• number1, number2 = eval(input(“Enter 2 numbers
separated by commas:”)

Named Constants

• Often, we need constants in programs, e.g., 𝜋𝜋., whose value never changes.
• Python does not have a special syntax for naming constants. You can simply create a

variable to denote a constant. To distinguish a constant from a variable, use all uppercase
letters to name a constant.

Examples:

• PI = 3.14159
• SIZE = 3

Naming Conventions

• Choose meaningful and descriptive names.

• Typically begin with lower case

• Python typically names with underscores separating words (snake casing), but other styles
capitalize the first letter of each subsequent word (camel casing):

• my_area_variable
• myAreaVariable

• Constants will be all caps using snake casing: MY_PI_CONSTANT

• Be consistent!

Scientific Notation

• Floating-point literals can also be specified in scientific notation

• Example,
• 1.23456e+2, same as 1.23456e2, is equivalent to 123.456
• 1.23456e-2 is equivalent to 0.0123456. E (or e) represents an exponent

and it can be either in lowercase or uppercase.

Expressions

Numeric Operators

Name Meaning Example Result

+ Addition 34 + 1 35

- Subtraction 34.0 – 0.1 33.9

* Multiplication 300 * 30 9000

/ Float Division 1 / 2 0.5

// Integer Division 1 // 2 0

** Exponentiation 4 ** 0.5 2.0

% Remainder 20 % 3 2

+ Addition 34 + 1 35

- Subtraction 34.0 – 0.1 33.9

* Multiplication 300 * 30 9000

/ Float Division 1 / 2 0.5

// Integer Division 1 // 2 0

** Exponentiation 4 ** 0.5 2.0

% Remainder 20 % 3 2

Name Meaning Example Result	

Numeric Operators cont’d
• The / operator performs float division:

Example:
4/2 yields 2.0, 2/4 yields 0.5

• The // operator performs an integer division:
Example:

5//2 yields 2, 2//4 yields 0
• To compute ab, you can write a ** b
• The % operator (known as remainder or modulo operator) yields the remainder

after division
Example:

26 % 8 yields 2

Question

• If today is Thursday and you are planning to meet a friend after 10 days. What day is in
10 days?

Note: Assume Sunday is day 0 of the week

How to Evaluate an Expression

• Though Python has its own way to evaluate
an expression behind the scene, the result of
a Python expression and its corresponding
arithmetic expression are the same.

• Therefore, you can safely apply the arithmetic
rules for evaluating a Python expression.

3 + 4 * 4 + 5 * (4 + 3) - 1

3 + 4 * 4 + 5 * 7 – 1

3 + 16 + 5 * 7 – 1

3 + 16 + 35 – 1

19 + 35 – 1

 54 - 1

 53

 (1) inside parentheses first

 (2) multiplication

 (3) multiplication

 (4) addition

 (6) subtraction

 (5) addition

 (6) subtraction

 (5) addition

 (4) addition

 (3) multiplication

 (2) multiplication

 (1) inside parentheses first

3 + 4 * 4 + 5 * (4 + 3) - 1

3 + 4 * 4 + 5 * 7 – 1

3 + 16 + 5 * 7 – 1

3 + 16 + 35 – 1

19 + 35 – 1

 54 - 1

 53

Underflow and Overflow

• When a floating-point variable is assigned a value that is too large (in size) to be stored, it causes
overflow, a run time exception.

Example:
245 ** 1000

• When a floating-point number is too small (i.e., too close to zero) to be stored, it causes
underflow. Python approximates it to zero. So normally you should not be concerned with
underflow.

Augmented Assignment Operators

Operator Name Example Equivalent
+= Addition assignment i += 8 i = i + 8

-= Subtraction
assignment

i -= 8 i = i - 8

*= Multiplication
assignment

i *= 8 i = i * 8

/= Float division
assignment

i /= 8 i = i / 8

//= Integer division
assignment

i //= 8 i = i // 8

%= Remainder
assignment

i %= 8 i = i % 8

**= Exponent assignmnet i **= 8 i = i ** 8

Type Conversion

Type Conversion

• Use int(), float(), str() to convert any data type to integer,
floating-point, or string respectively

• Consider the following statements and their results:
• int(4.7) → 4
• float(4) → 4.0
• str(4) → "4"

• To round floating point numbers use round()
• round(4.7)→ 5

Next
Topic

Simple Sequential Programs

Thank you!
Questions?

	CMSC 105 �Elementary Programming
	Outline
	Introduction to Programming
	Walk through Programming
	Hello Class!
	Tracing
	Terminal Reference Guide
	Anatomy of a Python Program
	Statement
	Indentation
	Special Symbols
	Reserved words
	Programming Style and Documentation
	Appropriate Comments
	Naming Conventions
	Proper Indentation and Spacing
	Programming Errors
	Syntax Errors
	Runtime Errors
	Logic Errors
	Launch Python
	Launch Python IDLE
	Run Python Script
	A Simple Python Program
	Trace a Program Execution
	Trace a Program Execution
	Python IDE
	Reading input from the console
	Data Types
	Variables and Naming
	Identifiers (names)
	Literals
	Variables
	Expressions
	Assignment Statements
	Simultaneous assignment
	Named Constants
	Naming Conventions
	Scientific Notation
	Expressions
	Numeric Operators
	Numeric Operators cont’d
	Question
	How to Evaluate an Expression
	Underflow and Overflow
	Augmented Assignment Operators
	Type Conversion
	Type Conversion
	Next Topic
	Thank you!�Questions?

