
CMSC 105
Elementary

Programming

Acknowledgement: These slides are adapted from
slides provided with “Introduction to Programming

Using Python, Liang (Pearson 2013)” and slides
shared by Dr. Jory Denny

Outline

Classes & Objects

Practice Exercises

Motivations

• Suppose you want to develop a graphical user interface as shown
below. How do you program it?

• Facebook?
• Pixar animations?
• Amazon

Class and Objects

Department of Art and
Art History

Department of Biology

Department of
Chemistry

.

.

.

.

.

.
Department of

Theatre and Dance

Lectures

Assignments

Exams

University is an
example of class.

Example of objects
belonging to a class.

Example of attributes and
methods that are shared in
common by the objects of a
class.

Labs or reports

Object-oriented Programming Concepts

• Object-oriented programming (OOP) involves programming using
objects

• An object represents an entity in the real world that can be distinctly
identified. For example, a student, a desk, a circle, a button, and even
a loan can all be viewed as objects. An object has a unique identity,
state, and behaviors.

• The state of an object consists of a set of data fields (also known as properties)
with their current values.

• The behavior of an object is defined by a set of methods.

Objects

• An object has both a state and behavior. The state defines the object,
and the behavior defines what the object does.

• An object class defines its possible states and its behaviors
• An object instance is a variable of the object type, i.e., it is a specific “value”

or state

Class Name: Circle

Data Fields:
radius

Methods:
getArea()

Circle Instance 1

Data Fields:
radius: 10

Circle Instance 2

Data Fields:
radius: 25

Circle Instance 3

Data Fields:
radius: 125

A class template defines
the object

Three instances
of the Circle

class

Three instances of the Circle class

A class template defines the object

Class Name: Circle

Data Fields:

radius

Methods:

getArea()

Circle Instance 3

Data Fields:

radius: 125

Circle Instance 2

Data Fields:

radius: 25

Circle Instance 1

Data Fields:

radius: 10

Classes

• Classes are constructs that define objects of the same type
• A Python class uses variables to store data fields and defines methods

to perform actions. Additionally, a class provides a special type
method, known as initializer, which is invoked to create a new object.
An initializer can perform any action, but an initializer is designed to
perform initializing actions, such as creating the data fields of objects.

Example Class
import math
class Circle:
def __init__(self, radius = 1): # Construct a circle
self.radius = radius # Define data fields

def getPerimeter(self): # Methods operate on data
return 2*self.radius*math.pi

def getArea(self):
return self.radius * self.radius * math.pi

def setRadius(self, radius):
self.radius = radius Note, __ is two

underscores.

What else do you
notice?

Constructing Objects

• Once a class is defined, you can create objects from the class by
using the following syntax, called a constructor:
className(arguments)

• Example:
Circle(50)

• What happens?
• A new object is created in memory for this instance
• The special method __init__() is invoked on this new object. The
self
parameter is automatically set to the newly created object.

• A reference to the object is returned, so that you can save it in a variable.

Object in memory

Data Fields:

__init__(self, …)

Object
reference

Instance Methods

• Methods are functions defined inside a class. They are invoked by
objects to perform actions on the objects.

• For this reason, the methods are also called instance methods in Python.
You probably noticed that all the methods including the constructor have
the first parameter self, which refers to the object that invokes the
method. You can use any name for this parameter. But by convention,
self is used.

• Example:
c1 = Circle(50)
c2 = Circle(30)
a1 = c1.getArea() # Here c1 is the self argument
a2 = c2.getArea() # Here c2 is the self argument

Accessing Objects

• After an object is created, you can access its data fields and invoke its
methods using the dot operator (.), also known as the object member
access operator.

• Example:
c = Circle(50)
a = c.getArea()
p = c.getPerimeter()

Tracing

1. myCircle = Circle(5.0)
2. yourCircle = Circle()
3. yourCircle.setRadius(100)

Memory

Tracing

1. myCircle = Circle(5)
2. yourCircle = Circle()
3. yourCircle.setRadius(100)

Memory

myCircle:
None

Declare myCircle

Tracing

1. myCircle = Circle(5)
2. yourCircle = Circle()
3. yourCircle.setRadius(100)

Memory

myCircle:
None

0xA

Create a circle

Circle

radius 5

Tracing

1. myCircle = Circle(5)
2. yourCircle = Circle()
3. yourCircle.setRadius(100)

Memory

myCircle:
0xA (reference)

0xA

Assign memory
location to

reference variable

Circle

radius 5

Tracing

1. myCircle = Circle(5)
2. yourCircle = Circle()
3. yourCircle.setRadius(100)

Memory

myCircle: yourCircle:
0xA (reference) None

0xA

Declare yourCircle

Circle

radius 5

Tracing

1. myCircle = Circle(5)
2. yourCircle = Circle()
3. yourCircle.setRadius(100)

Memory

myCircle: yourCircle:
0xA (reference) None

0xA 0xB

Create a circle

Circle

radius 5

Circle

radius 1

Tracing

1. myCircle = Circle(5)
2. yourCircle = Circle()
3. yourCircle.setRadius(100)

Memory

myCircle: yourCircle:
0xA (reference) 0xB

0xA 0xB

Assign memory
location to

reference variable

Circle

radius 5

Circle

radius 1

Tracing

1. myCircle = Circle(5)
2. yourCircle = Circle()
3. yourCircle.setRadius(100)

Memory

myCircle yourCircle
0xA (reference) 0xB

0xA 0xB

Change radius in
your circle

Circle

radius 5

Circle

radius 100

Why self?

• Note that the first parameter is special. It is used in the
implementation of the method, but not used when the method is
called.

• So, what is this parameter self for? Why does Python need it?
• self is a parameter that represents an object

• Using self, you can access instance variables in an object, which
storing data fields

• Each object is an instance of a class and instance variables are tied to
specific objects. Thus, each object has its own unique instance variables.

• You can use the syntax self.x to access the instance variable x for the
object self inside of a method definition.

Object-Oriented Programming

• Object-oriented Programming – design principle for large programs
• Abstraction – Modeling objects
• Composition – Modeling object associations (HAS-A relationship)
• Encapsulation – combining data and operations (methods); data hiding from

misuse (private vs public)
• Inheritance – Types and sub-types (IS-A relationship)
• Polymorphism – Abstract types that can act as other types (for algorithm

design)

Abstraction and Encapsulation

• Abstraction means to separate class implementation from the use of
the class.

• A description of the class lets the user know how the class can be used (class
contract)

• Thus, the user of the class does not need to know how the class is
implemented

• The detail of implementation is encapsulated and hidden from the user.

Class Contract
(Signatures of

public methods and
public constants)

Class

Class implementation
is like a black box
hidden from the clients

Clients use the

class through the
contract of the class

Clients use the class through the contract of the class

Class implementation is like a black box hidden from the clients

Class

Class Contract

(Signatures of public methods and

public constants)

UML Class Diagram

• An aside: in design, we often document a class in a special diagram
called UML, or Unified Modeling Language.

• In this, we describe classes, their data, methods, and the relationships
to other objects.

UML Class Diagram for Abstraction

Circle

radius: float

Circle()
Circle(newRadius: float)
getArea(): float

Class name

Data fields

Constructors and methods

circle1: Circle

radius: 10

circle2: Circle

radius: 25

circle3: Circle

radius: 125

UML notation for
instances
(objects)

Example UML Diagram
Defining a TV Object

 TV

channel: int
volumeLevel: int
on: bool

TV()
turnOn(): None
turnOff(): None
getChannel(): int
setChannel(channel: int): None
getVolume(): int
setVolume(volumeLevel: int): None
channelUp(): None
channelDown(): None
volumeUp(): None
volumeDown(): None

The current channel (1 to 120) of this TV.
The current volume level (1 to 7) of this TV.
Indicates whether this TV is on/off.

Constructs a default TV object.
Turns on this TV.
Turns off this TV.
Returns the channel for this TV.
Sets a new channel for this TV.
Gets the volume level for this TV.
Sets a new volume level for this TV.
Increases the channel number by 1.
Decreases the channel number by 1.
Increases the volume level by 1.
Decreases the volume level by 1.

The current channel (1 to 120) of this TV.

The current volume level (1 to 7) of this TV.

Indicates whether this TV is on/off.

Constructs a default TV object.

Turns on this TV.

Turns off this TV.

Returns the channel for this TV.

Sets a new channel for this TV.

Gets the volume level for this TV.

Sets a new volume level for this TV.

Increases the channel number by 1.

Decreases the channel number by 1.

Increases the volume level by 1.

Decreases the volume level by 1.

TV

channel: int

volumeLevel: int

on: bool

TV()

turnOn(): None

turnOff(): None

getChannel(): int

setChannel(channel: int): None

getVolume(): int

setVolume(volumeLevel: int): None

channelUp(): None

channelDown(): None

volumeUp(): None

volumeDown(): None

Data Field Encapsulation

• Important to protect data from misuse, i.e., prevent direct
modifications of data fields, don’t let the client directly access data
fields.

• Important to make class easy to maintain
• Data field encapsulation is accomplished by defining private data

fields. In Python, the private data fields are defined with two leading
underscores. You can also define a private method named with two
leading underscores

Data Field Encapsulation

• Sometimes, accessing this variable will give an AttributeError:
c = Circle(5)
print(c.__radius) # AttributeError

Note if radius was public
(no __ inside the class)
this would work

• Again, most of the time, data should be kept private to prevent
misuse

UML Class diagram for encapsulation

Loan

-annualInterestRate: float
-numberOfYears: int
-loanAmount: float
-borrower: str

Loan(annualInterestRate: float,

numberOfYear: int, loanAmount:
float, borrower: str)

The annual interest rate of the loan (default: 2.5).
The number of years for the loan (default: 1)
The loan amount (default: 1000).
The borrower of this loan.

Constructs a Loan object with the specified annual

interest rate, number of years, loan amount, and
borrower.

The get methods for these data fields are
provided in the class, but omitted in the
UML diagram for brevity.

The – sign denotes a private data field.

The – sign denotes a private data field.

The annual interest rate of the loan (default: 2.5).

The number of years for the loan (default: 1)

The loan amount (default: 1000).

The borrower of this loan.

Constructs a Loan object with the specified annual interest rate, number of years, loan amount, and borrower.

Loan

-annualInterestRate: float

-numberOfYears: int

-loanAmount: float

-borrower: str

Loan(annualInterestRate: float, numberOfYear: int, loanAmount: float, borrower: str)

The get methods for these data fields are provided in the class, but omitted in the UML diagram for brevity.

Accessors/Modifiers

• Methods which read/use the
data without modifying it are
commonly referred to as
accessors

• Methods that alter the data of
an object are referred to as
modifiers

• A common accessor/modifier
pair is a getter/setter for a
specific data member

• The getter method simply returns
the data value

• The setter method simple sets a
new value to the data

• What types are the following
methods in the circle class?

• getRadius()
• setRadius()
• getArea()
• getPerimeter()

Immutability

• If the contents of an object cannot be changed once the object is
created, the object is immutable.

• If you delete the set method in the Circle class, the class would be immutable
because radius is private and cannot be changed without a set method.

• The objects for integers/float/string are immutable in python. This is
why they act like primitive types.

Scope

• Variables private to a class should only be accessed within that class.
• Recall – scope is the lifetime of a variable. It dictates where you as the

programmer may refer to the identifier (name) in code
• Rule – The scope of class member variables is the entire class (including inside

of any method). They can be declared anywhere inside a class.
• Rule – The scope of a local variable starts from its declaration and continues

to the end of the block that contains the variable.

References passed to functions/copy

c1

Object type assignment c1 = c2

 Before:

 c2

c1

After:

c2

c1: Circle
radius = 5

C2: Circle
radius = 9

c1: Circle
radius = 5

C2: Circle
radius = 9

• When passing objects into
functions, they are passed-by-
object-reference. This means
that the object that is passed
to the function is modified
directly.

• During assignment of
variables, the reference is
being copied!

Object type assignment c1 = c2

C2: Circle

radius = 9

c1: Circle

radius = 5

After:

c2

c1

C2: Circle

radius = 9

c1: Circle

radius = 5

c2

Before:

c1

Static and class variables

• You can also have variables shared among all instances, these are
called class or static variables

• Declare them at the top of the class:
class Circle:

numInstances = 0
def __init__(self, radius=1):
self.__radius = radius
Circle.numInstances += 1

Static and class functions

• Class functions can operate on the class or
static variables

• First parameter will be cls (for class) and
variables can be accessed from it.
Demarcated with @classmethod

• Example (inside of a class):
@classmethod
def getNumInstances(cls):
return cls.numInstances

• Static functions can only read class or
static variables

• Takes no special parameters.
Demarcated with @staticmethod

• Serves as just a utility function
• Example (inside of a class):

@staticmethod
def pi(places):
return round(math.pi,

places)

Instance vs Static

• Instance – a, or relating to a, specific object’s value
• Instance variables belong to a specific instance.
• Instance methods are invoked by an instance of the class.

• Static – not a, or relating to a, specific object’s value (related to the
type).

• Static variables are shared by all the instances of the class.
• Static methods are not tied to a specific object.

Exercise

• Make and test a class rectangle, defined by width and height (define
__init__).

• Have methods to compute its area and perimeter
• Create a class bank with the following properties:

• account_number
• name
• balance
Given the properties above, write methods to:
• __init__(self,number, name, balance)
• show_balance(self)
• withdraw(self,amount) (update the balance after amount withdrawal).
• Deposit(self,amount) (update the balance after amount deposit)

Thank you!
Questions?

	CMSC 150 �Introduction to Computing�
	Outline
	Motivations
	Class and Objects
	Object-oriented Programming Concepts
	Objects
	Classes
	Example Class
	Constructing Objects
	Instance Methods
	Accessing Objects
	Tracing
	Tracing
	Tracing
	Tracing
	Tracing
	Tracing
	Tracing
	Tracing
	Why self?
	Object-Oriented Programming
	Procedural vs. Object-Oriented
	Abstraction and Encapsulation
	UML Class Diagram
	UML Class Diagram for Abstraction
	Example UML Diagram�Defining a TV Object
	Data Field Encapsulation
	Data Field Encapsulation
	UML Class diagram for encapsulation
	Accessors/Modifiers
	Immutability
	Scope
	References passed to functions/copy
	Static and class variables
	Static and class functions
	Instance vs Static �
	Exercise
	Chapter from Textbook
	Thank you!�Questions?

