CMSC 105
Elementary Programming

Acknowledgement: These slides are adapted from slides
provided with “Introduction to Programming Using Python, Liang
(Pearson 2013)” and slides shared by Dr. Jory Denny

Lists

Outline | |
Practice Exercises

Copying Lists

e Often, in a program, you need to
duplicate a list or a part of a list.

* In such cases, you could attempt
to use the assignment statement
(=), as follows:

12 = 11

* But this copies the reference,
not the list. Do this trick instead:
12 = [] + 11

Before the assignment
list2 = listl;

listl

list2

Y

Contents
of listl

Y

Contents
of list2

After the assignment
list2 = list1;

Contents
of listl

listl /
list2

Garbage — |

Contents
of list2

Heterogeneous lists

A list can contain values of different types.

>>> s = ['Score’, 80] |String and a number

>>> y = [‘Year’, 2015]

>>> result = [s,y]

>>> result

[[‘Score’, 80],['Year', 2015]]

List of lists, or
nested list

Passing lists to functions

* Passing lists to functions is perfectly normal. Consider:
printList (lst) :
X lst:
(x, end=" ")

()

1 = [31 1, 2/ 6/ 4, 2]
printList (1)

printList (["H1", 5, 2.31)

Mutable vs Immutable Objects

* An immutable object can’t be changed after it is created.
Example: int, float, bool, string.

* Mutable objects are easy to change.
Example: list, dictionary, set.

Passing lists to functions

* Python uses to pass arguments to a
function. There are important differences between passing the values
of variables of numbers and strings and passing lists.

* Immutable objects act like pass-by-value (numbers and strings)
 Mutable objects can have their memory altered (lists and other objects)

Passing lists to functions

Example
main () :
x =1 # X represents an int wvalue
vy = [1, 2, 3] # y represents a list
m(x, V) # Invoke f with arguments x and vy
print ("x is " + str(x)) # Prints 1, not 1001
print ("y[0] is " + str(y[0])) # Prints 5555
m (number, numbers) :
number = 1001 # Assign a new value to number
numbers [0] = 5555 # Assign a new value to

numbers [0]

main ()

Subtle Issues Regarding
Default Arguments

* Default values are only created

a4 (lst = [1): only once.
: XX' > _lst:. * Consider this program. Its output
lst.append (x) '51]
lst 1 2]

11 = add (1) (11, 12, 13, 3]
print (11) (1, 2, 4]
12 = add (2)
print (12)
13 = add (3, [11, 12,
137)
print (13)

14 = add (4)
print (14)

Summary

* Lists.
* Organized way to store huge quantities of data.
* Almost as easy to use as primitive types.
* Can directly access an element given its index.

MAN, YOURE BEING IN(ONSISTENT
WITH YOur, ARRAY INDICES. SOME
ARE FROM ONE, 50ME. FRoM ZERD.

DIFFERENT TASks CALL FOR VAT WHAT?

DIFFERENT CONVENTIONS. TO)

QUOTE STANFORD ALGORITHAYS WELL, THATS WHAT HE
EXYPERT DONALD KNUTH, SAID WHEN | ASKED
YOU GET IN MY HOUSE? /

a0 allla s

http://imgs.xkcd.com/comics/donald knuth.png

Problem 1

* Write a program that reads two inputs—
* Names separated by spaces
» Scores separated by spaces

Run a for loop for each element in names and print the corresponding scores. For example,

Fnter names: Bob Ana John
Enter scores:78 87 98

Output:
Bob-"78
Ana-87/
John-98

Problem 2

Write a program that takes as input a sequence of numbers separated
by spaces. Using list comprehension, print alternate elements of the
original sequence.

Example:

Enter sequence:1 2 3 4 5
Output:

1 3 5

Problem 3

Show the output of the following:
def m(x,vVy) :

X=3

y[0]=3

def main () :
number=0
numbers=[10]
m (number, numbers)

print ("Number 1s", number, "and numbers[0]
18", numbers[0])

main ()

Problem 4

What will be the output?

def modify list (num,lst=[1,2,3]):
lst.append (num)
return 1st

))

print (modify list (12

print (modify list(1,[11,12,13]))
(14
(1,

))

(
(

print (modify list
([2,22,23]))

print (modify list

Chapters Covered from Textbook

e Chapter 10

Thank you!
Questions!

