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Copying Lists

e Often, in a program, you need to
duplicate a list or a part of a list.

* In such cases, you could attempt
to use the assignment statement
(=), as follows:

12 = 11

* But this copies the reference,
not the list. Do this trick instead:
12 = [] + 11

Before the assignment
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After the assignment
list2 = list1;
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Heterogeneous lists

A list can contain values of different types.

>>> s = ['Score’, 80] |String and a number

>>> y = [‘Year’, 2015]

>>> result = [s,y]

>>> result

[[‘Score’, 80],['Year', 2015]]

List of lists, or
nested list




Passing lists to functions

* Passing lists to functions is perfectly normal. Consider:
printList (lst) :
X lst:
(x, end=" ")

()

1 = [31 1, 2/ 6/ 4, 2 ]
printList (1)

printList (["H1", 5, 2.31)



Mutable vs Immutable Objects

* An immutable object can’t be changed after it is created.
Example: int, float, bool, string.

* Mutable objects are easy to change.
Example: list, dictionary, set.



Passing lists to functions

* Python uses to pass arguments to a
function. There are important differences between passing the values
of variables of numbers and strings and passing lists.

* Immutable objects act like pass-by-value (numbers and strings)
 Mutable objects can have their memory altered (lists and other objects)



Passing lists to functions

Example
main () :
x =1 # X represents an int wvalue
vy = [1, 2, 3] # y represents a list
m(x, V) # Invoke f with arguments x and vy
print ("x is " + str(x)) # Prints 1, not 1001
print ("y[0] is " + str(y[0])) # Prints 5555
m (number, numbers) :
number = 1001 # Assign a new value to number
numbers [0] = 5555 # Assign a new value to

numbers [0]

main ()



Subtle Issues Regarding
Default Arguments

* Default values are only created

a4 ( lst = [1): only once.
: XX' > _lst:. * Consider this program. Its output
lst.append (x) '51]
lst 1 2]

11 = add (1) (11, 12, 13, 3]
print (11) (1, 2, 4]
12 = add (2)
print (12)
13 = add (3, [11, 12,
137)
print (13)

14 = add (4)
print (14)



Summary

* Lists.
* Organized way to store huge quantities of data.
* Almost as easy to use as primitive types.
* Can directly access an element given its index.
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Problem 1

* Write a program that reads two inputs—
* Names separated by spaces
» Scores separated by spaces

Run a for loop for each element in names and print the corresponding scores. For example,

Fnter names: Bob Ana John
Enter scores:78 87 98

Output:
Bob-"78
Ana-87/
John-98



Problem 2

Write a program that takes as input a sequence of numbers separated
by spaces. Using list comprehension, print alternate elements of the
original sequence.

Example:

Enter sequence:1 2 3 4 5
Output:

1 3 5



Problem 3

Show the output of the following:
def m(x,vVy) :

X=3

y[0]=3

def main () :
number=0
numbers=[10]
m (number, numbers)

print ("Number 1s", number, "and numbers[0]
18", numbers[0])

main ()



Problem 4

What will be the output?

def modify list (num,lst=[1,2,3]):
lst.append (num)
return 1st

) )

print (modify list (12

print (modify list(1,[11,12,13]))
(14
(1,

) )

(
(

print (modify list
( [2,22,23]))

print (modify list



Chapters Covered from Textbook

e Chapter 10



Thank you!
Questions!





