
CMSC 105
Elementary Programming

Acknowledgement: These slides are adapted from slides
provided with “Introduction to Programming Using Python, Liang

(Pearson 2013)” and slides shared by Dr. Jory Denny

Outline

Lists

Practice Exercises

Copying Lists

• Often, in a program, you need to
duplicate a list or a part of a list.

• In such cases, you could attempt
to use the assignment statement
(=), as follows:
l2 = l1

• But this copies the reference,
not the list. Do this trick instead:
l2 = [] + l1

Append to a new
list

Contents

of list1

list1

Contents

of list2

list2

Before the assignment

list2 = list1;

Contents

of list1

list1

Contents

of list2

list2

After the assignment

list2 = list1;

Garbage

Heterogeneous lists

A list can contain values of different types.

>>> s = [‘Score’, 80]

>>> y = [‘Year’, 2015]

>>> result = [s,y]

>>> result

[[‘Score’, 80],['Year', 2015]]

String and a number

List of lists, or
nested list

Passing lists to functions

• Passing lists to functions is perfectly normal. Consider:
def printList(lst):

for x in lst:

print(x, end=" ")

print()

l = [3, 1, 2, 6, 4, 2]

printList(l)

printList(["Hi", 5, 2.3]) # Anonymous list

Mutable vs Immutable Objects

• An immutable object can’t be changed after it is created.

Example: int, float, bool, string.

• Mutable objects are easy to change.

Example: list, dictionary, set.

Passing lists to functions

• Python uses pass-by-object-reference to pass arguments to a
function. There are important differences between passing the values
of variables of numbers and strings and passing lists.

• Immutable objects act like pass-by-value (numbers and strings)

• Mutable objects can have their memory altered (lists and other objects)

Passing lists to functions
Example

def main():
x = 1 # x represents an int value
y = [1, 2, 3] # y represents a list
m(x, y) # Invoke f with arguments x and y
print("x is " + str(x)) # Prints 1, not 1001
print("y[0] is " + str(y[0])) # Prints 5555

def m(number, numbers):
number = 1001 # Assign a new value to number
numbers[0] = 5555 # Assign a new value to

numbers[0]

main()

Subtle Issues Regarding
Default Arguments

def add(x, lst = []):
if x not in lst:

lst.append(x)
return lst

l1 = add(1)
print(l1) # [1]
l2 = add(2)
print(l2) # [1, 2]
l3 = add(3, [11, 12,
13])
print(l3) # [11, 12,
13, 3]
l4 = add(4)
print(l4) # [1, 2, 4]

• Default values are only created
only once.

• Consider this program. Its output
is:
[1]
[1, 2]
[11, 12, 13, 3]
[1, 2, 4]

Summary

• Lists.
• Organized way to store huge quantities of data.

• Almost as easy to use as primitive types.

• Can directly access an element given its index.

http://imgs.xkcd.com/comics/donald_knuth.png

Problem 1
• Write a program that reads two inputs—

• Names separated by spaces
• Scores separated by spaces

Run a for loop for each element in names and print the corresponding scores. For example,

Enter names: Bob Ana John

Enter scores:78 87 98

Output:

Bob-78

Ana-87

John-98

Problem 2

Write a program that takes as input a sequence of numbers separated
by spaces. Using list comprehension, print alternate elements of the
original sequence.

Example:

Enter sequence:1 2 3 4 5

Output:

1 3 5

Problem 3
Show the output of the following:
def m(x,y):

x=3

y[0]=3

def main():

number=0

numbers=[10]

m(number,numbers)

print("Number is", number,"and numbers[0]
is",numbers[0])

main()

Problem 4

What will be the output?

def modify_list(num,lst=[1,2,3]):

lst.append(num)

return lst

print(modify_list(12))

print(modify_list(1,[11,12,13]))

print(modify_list(14))

print(modify_list(1,[2,22,23]))

Chapters Covered from Textbook

• Chapter 10

Thank you!
Questions?

