CMSC 105
Elementary
Programming

Acknowledgement: These slides are adapted from
slides provided with “Introduction to Programming
Using Python, Liang (Pearson 2013)” and slides
shared by Dr. Jory Denny

Functions

Outline

Opening Problem

* Find the sum of integers from 1 to 10, from 20 to 30, and from 35 to
45, respectively.

 Compute the square root of a number over and over again
* Organize a large program into smaller components

Need of reusable and simplified code!

Problem

1.

2.

3.

4 . print("Sum from 1 to 10 1s", sum)
1.

2.

3.

4. print("Sum from 20 to 30 1s", sum)
1.

2.

3.

4 . print("Sum from 35 to 45 1s", sum)

Solution

def sum(1l,

res = 0

for 1 in r
res += 1

return res

12) :

ange (11, R2+1): Function
Definition

OO - OOUIDWN

11. #
13.

main () :
print ("Sum
print ("Sum
print ("Sum

Invoke the
name
main ()

Function

from 1 to 10 1s ", Invocation
from 20 to 30 1s ",
from 35 to 45 1s ",

maln Functio
== maln ¢ Main is also a function. While we are by
no means required to provide a function

called main, it is convention. Other
languages require such constructs.

Python built-in functions

For example, you've used a few of Python's built-in functions already:
print
input
len
int
random.randint

Python built-in functions

For example, you've used a few of Python's built-in functions already:
print
input
len
int
random.randint

You don't need to know how they work. You just use them and they do
work.

User-defined functions

No language has all the built-in functions that you'd ever need, so
every language gives you the ability to create your own functions.

It's necessary to make your own functions in order to write well-
designed programs.

Function Definitions

Format

def name (parameters) :
body

* The name can be any valid identifier.

* The parameters are the unknowns that you use in the body, maybe
none at all.

* The body can be any group of statements.

Example 1

>>> def print_hello(): > No formal parameters
print("Hello there!") Calling the function
 No parameter value
. passed
>>> print_hello() > - No return value

Hello there!

What will be the output?

Example 2

>>> def print_hello(message):
print(message)

Formal parameter stored in
>>> print_hello("Hi there!™) variable message.

Hi there!

Actual value of the variable
while calling function.

Example 2 The name variable is

undefined right now,

>>> def print_hello(message): _
print(message) \ but when the function
is called, message will

receive the value of the

>>> print_hello("Hi there!")
Hi there! argument.

An argument is
required here when
you call the
function...

Example 2

>>> def print_hello(message):
print(message)

>>> print_hello(message]) » Is it correct?

Traceback (most recent call last):

File "<pyshell#8>", line 1, in <module>
print_hello(message)

Why do you see this error?

NameError: name 'message’ is not defined

Defining Functions

° A is a collection of
statements that are grouped
together to perform an

operation.
e "function”
* "subroutine”
* "algorithm"

v

v

v

Define a function

- f(x,y,2)

Invoke a function

function name formal parameters

function
header

def max (numl,

num?) :

function —_—>
body

if numl > num?2:

else:

return result

result = numl

result = num?2

return value

Zz = max(x, V)

()

actual parameters
(arguments)

Function Header

* A function contains a and . The header begins with the

keyword, followed by function’s name and parameters, followed
by a colon.

Define a function Invoke a function

function name formal parameters
function +>def max (numl, num?2) : z = max(x, y)
header T T

. [if numl > num2: actual parameters
function ﬁ result = numl (arguments)
body else:
result = num?2
_return result
return value

Formal Parameters

 The variables defined in the function header are known as

Define a function

Invoke a function

function name

function
header

—>»def max [numl, num2l:

function >
body

if numl > num?2:
result = numl
else:

result = num?2

return result

return value

formal parameters

Zz = max(x, V)

()

actual parameters
(arguments)

Actual Parameters

* When a function is , You pass a value to the parameter. This
value is referred to as or

Define a function Invoke a function

function name formal parameters
function _
header def max (numl, num?2): z = max(,)

. [if numl > num2: actual parameters
function 5, result = numl
bod (arguments)
y else:
result = num?2
_return result
return value

Return Value

* A function optionally may a value using the keyword.
Define a function Invoke a function
function name formal parameters
function . _
header def max (numl, num?2): zZ max (x, y)
[if numl > num?: actual parameters
function 1t = 1
body —> else]:fesu num (arguments)
result = num?2

| return resultl\

return value

Example

>>> def find_sum(numl,num?2): >>> def find_sum(numl,num?2):
sum_val=numl+num?2 sum_val=numl+num?2
print(sum_val)» Prints the return sum_val
sum

>>> value=find_sum(2,3)

>>> find_sum(2,3) >>> value
find_sum
D 5 returns the
Value stored in result and
variable ‘value’ stores it in
can be used variable ‘value’
later in the

program

Exercise

* Write a function that takes as input parameter a number and returns
boolean value True/False if the number is/is not an even number.

* Write a function that takes as input a number, let’s say num and
returns the incremented value (num+1)

Function Details

Return Values

e Functions do not need return values/statements

* Example: Try it with this program.

doSomething () : _ Invoke
("Hj_ there") print (doSomething ()).

* In this case, functions automatically return a special value in Python —
None.
* |ltis a keyword, similar to True and False.
* Other languages refer to this as "void" and it is not actually a value

Passing Arguments by Positions

e Consider:
nPrintln (message, n):
1 (n) :
(message)

* What happens with the following invocations?

* nPrintln ("H1", 5)
* nPrintln("Class", 2)

Passing Arguments by Keywords

e Consider:
nPrintln (message, n):
1 (n) :
(message)

 What about the following?
* nPrintln(n=4, message="What now?")

* This is completely ok and normal in Python

Passing Variables

* In python, all data are and variables are actually a
to an object

* When you invoke a function with arguments, the reference value of
each argument is passed to the parameter. This is referred to as

* The value is actually a reference value to the object

/ efers to
varName :

/ N Object
otherVarName = wvarName memory

Reuse Functions from Other Files

* One of the benefits of functions is for reuse.
e Simply import, and use the Function

* Example
math sqgrt
sqrt ()

From states the file from
which a function or class is

taken. Import brings the

Scope

is the part of the program where a variable can be referenced

* A variable created inside a function is referred to as a
* Local variables can only be accessed inside a function.

* The scope of a local variable starts from its creation and continues to the end
of the function that contains the variable.

* In Python, you can also use

* They are created outside all functions and are accessible to all functions in
their scope.

* You have been using these exclusively until now

Scope Example 1

globalVar = 1

£1(): What is output?
localVar = 2

print(globalVar)
print(localVar)
£1()
print (globalVar)
Out of scope. This gives an error
print(localVar)

Scope Example 2

x = 1

L0
X = 2

Displays 2
print (x)
£1()
Displays 1
print (x)

Scope Example 3

x = eval (input ("Enter a number: "))

x > 0
What is output?
y = 4

Gives an error only if y is not created
print(y)

Scope Example 4

sum = 0

1 range (5b) :
: g (5) What is output?
sum += 1

Displays 4
print (1)

Scope Example 5

X = 1
increase () :
X

What is output?

X += 1

Display 2

print (x)
increase ()
Display 2
print (x)

Default arguments

* You are allowed to define default arguments for parameters

* When the function is invoked without the parameter, the default
value is used

* Example
incr (n, 1=1):
n + 1
x = 1
X = 1ncr(x, 4)

X = 1ncr (x)

Multiple Return values

* Python also allows returning multiple values at a time. Example:
sgrAndCube (x) :
sgqr = X*X
cube = sgr*x
sqr, cube
sqr, cube = sgrAndCube (D)
(sgr, cube)

Exercise

e Write a function that takes as input parameters two numbers and
returns them in ascending order.

* Write a function that calculates the area of a circle given its radius.
Use this expression: a = 3.14 * r ** 2
It should work like this:

>>> circle (2)
12.56

Modularizing Code

* Functions can be used to reduce redundant coding and enable code
reuse. Functions can also be used to modularize code and improve
the quality of the program.

* Benefits of functions
* Write a function once and reuse it anywhere.
* Information hiding. Hide the implementation from the user.
* Reduce complexity.

Software Development

* Things to remember
* You rarely write code for yourself

* Rather, you belong to a team working towards a common goal, where no one
person can know everything of the code.

* How can we communicate intent of code and its design?
* Documentation

* How do we develop large programs?
* Stepwise refinement

Documentation

* We use comments to relay intent of control flow and difficult to
understand statements

* Itis a fine balance between too much and too little commenting

* For larger control structures, i.e., functions, methods, and classes, we
should provide official documentation to specify its use
* We will use docstring format

e Every class, method, and function will need a docstring describing its purpose,
formal arguments, and return value.

Documentation

""" Denotes the start and end of a
docstring. If you use the help () functionin
python, it prints the docstring. Try it with
help (square).

* Docstring example:

Always provide a brief explanatory

SQUALE : statement.
mwiw
square a numbe+— If arguments are needed, document each
one with a description. Otherwise do not
Arguments . have an "Arguments" section.

k
n: A number.
If the function returns a value, document its

meaning in the "Returns" section.
Returns: °

The sdqUare of the input number.

n*n

Stepwise Refinement

* The concept of function abstraction can be applied to the process of
developing programs.

* When writing a large program, you can use the "divide and conquer”
strategy, also known as stepwise refinement, to decompose it into
subproblems.

* The subproblems can be further decomposed into smaller, more
manageable problems.

Benefits of Stepwise Refinement

e Simpler programs

* Reusing functions

 Easier developing, debugging, and testing
* Better for facilitating teamwork

Thank youl!
Questions?

