
CMSC 105
Elementary

Programming

Acknowledgement: These slides are adapted from
slides provided with “Introduction to Programming

Using Python, Liang (Pearson 2013)” and slides
shared by Dr. Jory Denny

1

Outline

Functions

Opening Problem

• Find the sum of integers from 1 to 10, from 20 to 30, and from 35 to
45, respectively.

• Compute the square root of a number over and over again

• Organize a large program into smaller components

Need of reusable and simplified code!

Problem

1. sum = 0
2. for i in range(1, 11):
3. sum += i
4. print("Sum from 1 to 10 is", sum)

1. sum = 0
2. for i in range(20, 30):
3. sum += i
4. print("Sum from 20 to 30 is", sum)

1. sum = 0
2. for i in range(35, 46):
3. sum += i
4. print("Sum from 35 to 45 is", sum)

Solution

1. def sum(i1, i2):
2. res = 0
3. for i in range(i1, i2+1):
4. res += i
5. return res
6.
7. def main():
8. print("Sum from 1 to 10 is ", sum(1, 10));
9. print("Sum from 20 to 30 is ", sum(20, 30));
10. print("Sum from 35 to 45 is ", sum(35, 45));

11. # Invoke the main Function
12. if __name__ == '__main__':
13. main()

Function
Definition

Function
Invocation

Main is also a function. While we are by
no means required to provide a function

called main, it is convention. Other
languages require such constructs.

Python built-in functions

For example, you've used a few of Python's built-in functions already:
print
input
len
int
random.randint

Python built-in functions

For example, you've used a few of Python's built-in functions already:
print
input
len
int
random.randint

You don't need to know how they work. You just use them and they do
work.

User-defined functions

No language has all the built-in functions that you'd ever need, so
every language gives you the ability to create your own functions.

It's necessary to make your own functions in order to write well-
designed programs.

Function Definitions

Format

def name(parameters):
body

• The name can be any valid identifier.
• The parameters are the unknowns that you use in the body, maybe

none at all.
• The body can be any group of statements.

Example 1

>>> def print_hello():
print("Hello there!")

>>> print_hello()

No formal parameters

What will be the output?

Hello there!

Calling the function
• No parameter value

passed
• No return value

Example 2

>>> def print_hello(message):
print(message)

>>> print_hello("Hi there!")
Hi there!

Formal parameter stored in
variable message.

Actual value of the variable
while calling function.

Example 2

>>> def print_hello(message):
print(message)

>>> print_hello("Hi there!")
Hi there!

The name variable is
undefined right now,
but when the function
is called, message will
receive the value of the
argument.

An argument is
required here when
you call the
function...

Example 2

>>> def print_hello(message):
print(message)

>>> print_hello(message) Is it correct?

Traceback (most recent call last):

File "<pyshell#8>", line 1, in <module>

print_hello(message)

NameError: name 'message' is not defined

Why do you see this error?

Defining Functions

• A function is a collection of
statements that are grouped
together to perform an
operation.
• "function"

• "subroutine"

• "algorithm"

𝑓
𝑥

𝑦

𝑧

𝑓 𝑥, 𝑦, 𝑧

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

function name formal parameters

return value

function

body

function

header

Define a function Invoke a function

 z = max(x, y)

 actual parameters

(arguments)

Function Header

• A function contains a header and body. The header begins with the
def keyword, followed by function’s name and parameters, followed
by a colon.

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

function name formal parameters

return value

function

body

function

header

Define a function Invoke a function

 z = max(x, y)

 actual parameters

(arguments)

Formal Parameters

• The variables defined in the function header are known as
formal parameters.

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

function name formal parameters

return value

function

body

function

header

Define a function Invoke a function

 z = max(x, y)

 actual parameters

(arguments)

Actual Parameters

• When a function is invoked, you pass a value to the parameter. This
value is referred to as actual parameter or argument.

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

function name formal parameters

return value

function

body

function

header

Define a function Invoke a function

 z = max(x, y)

 actual parameters

(arguments)

Return Value

• A function optionally may return a value using the return keyword.

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

function name formal parameters

return value

function

body

function

header

Define a function Invoke a function

 z = max(x, y)

 actual parameters

(arguments)

Example

>>> def find_sum(num1,num2):

sum_val=num1+num2

print(sum_val)

>>> find_sum(2,3)

5

>>> def find_sum(num1,num2):

sum_val=num1+num2

return sum_val

>>> value=find_sum(2,3)

>>> value

5

Prints the
sum

find_sum
returns the
result and
stores it in
variable ‘value’

Value stored in
variable ‘value’
can be used
later in the
program

Exercise

• Write a function that takes as input parameter a number and returns
boolean value True/False if the number is/is not an even number.

• Write a function that takes as input a number, let’s say num and
returns the incremented value (num+1)

Function Details

Return Values

• Functions do not need return values/statements

• Example:
def doSomething():

print("Hi there")

• In this case, functions automatically return a special value in Python –
None.
• It is a keyword, similar to True and False.

• Other languages refer to this as "void" and it is not actually a value

Try it with this program.
Invoke

print(doSomething()).

Passing Arguments by Positions

• Consider:
def nPrintln(message, n):

for i in range(n):

print(message)

• What happens with the following invocations?
• nPrintln("Hi", 5)

• nPrintln("Class", 2)

• nPrintln(4, "What now?") Type error!

Passing Arguments by Keywords

• Consider:
def nPrintln(message, n):

for i in range(n):

print(message)

• What about the following?
• nPrintln(n=4, message="What now?")

• This is completely ok and normal in Python

Passing Variables

• In python, all data are objects and variables are actually a reference
to an object

• When you invoke a function with arguments, the reference value of
each argument is passed to the parameter. This is referred to as pass-
by-value.

• The value is actually a reference value to the object

varName

otherVarName = varName

Object
memory

Refers to

Reuse Functions from Other Files

• One of the benefits of functions is for reuse.

• Simply import, and use the Function

• Example
from math import sqrt

sqrt()

From states the file from
which a function or class is
taken. Import brings the
name into the program

Scope

• Scope is the part of the program where a variable can be referenced

• A variable created inside a function is referred to as a local variable.
• Local variables can only be accessed inside a function.

• The scope of a local variable starts from its creation and continues to the end
of the function that contains the variable.

• In Python, you can also use global variables.
• They are created outside all functions and are accessible to all functions in

their scope.

• You have been using these exclusively until now

Scope Example 1

globalVar = 1

def f1():

localVar = 2

print(globalVar)

print(localVar)

f1()

print(globalVar)

Out of scope. This gives an error

print(localVar)

What is output?

Scope Example 2

x = 1

def f1():

x = 2

Displays 2

print(x)

f1()

Displays 1

print(x)

What is output?

Scope Example 3

x = eval(input("Enter a number: "))

if x > 0:

y = 4

Gives an error only if y is not created

print(y)

What is output?

Scope Example 4

sum = 0

for i in range(5):

sum += i

Displays 4

print(i)

What is output?

Scope Example 5

x = 1

def increase():

global x

x += 1

Display 2

print(x)

increase()

Display 2

print(x)

What is output?

Default arguments

• You are allowed to define default arguments for parameters

• When the function is invoked without the parameter, the default
value is used

• Example
def incr(n, i=1):

return n + i

x = 1

x = incr(x, 4)

x = incr(x) # Invoked like incr(x, 1)

Multiple Return values

• Python also allows returning multiple values at a time. Example:
def sqrAndCube(x):

sqr = x*x

cube = sqr*x

return sqr, cube

sqr, cube = sqrAndCube(5)

print(sqr, cube)

Exercise

• Write a function that takes as input parameters two numbers and
returns them in ascending order.

• Write a function that calculates the area of a circle given its radius.

Use this expression: a = 3.14 * r ** 2

It should work like this:

>>> circle(2)

12.56

Modularizing Code

• Functions can be used to reduce redundant coding and enable code
reuse. Functions can also be used to modularize code and improve
the quality of the program.

• Benefits of functions
• Write a function once and reuse it anywhere.

• Information hiding. Hide the implementation from the user.

• Reduce complexity.

Software Development

• Things to remember
• You rarely write code for yourself

• Rather, you belong to a team working towards a common goal, where no one
person can know everything of the code.

• How can we communicate intent of code and its design?
• Documentation

• How do we develop large programs?
• Stepwise refinement

Documentation

• We use comments to relay intent of control flow and difficult to
understand statements
• It is a fine balance between too much and too little commenting

• For larger control structures, i.e., functions, methods, and classes, we
should provide official documentation to specify its use
• We will use docstring format

• Every class, method, and function will need a docstring describing its purpose,
formal arguments, and return value.

Documentation

• Docstring example:
def square(n):

"""
Square a number.

Arguments:
n: A number.

Returns:
The square of the input number.

"""
return n*n

""" Denotes the start and end of a
docstring. If you use the help() function in

python, it prints the docstring. Try it with
help(square).

Always provide a brief explanatory
statement.

If arguments are needed, document each
one with a description. Otherwise do not

have an "Arguments" section.

If the function returns a value, document its
meaning in the "Returns" section.

Stepwise Refinement

• The concept of function abstraction can be applied to the process of
developing programs.

• When writing a large program, you can use the "divide and conquer"
strategy, also known as stepwise refinement, to decompose it into
subproblems.

• The subproblems can be further decomposed into smaller, more
manageable problems.

Benefits of Stepwise Refinement

• Simpler programs

• Reusing functions

• Easier developing, debugging, and testing

• Better for facilitating teamwork

Thank you!
Questions?

